On the Power of Circuits with Gates of Low L1 Norms
نویسنده
چکیده
We examine the power of Boolean functions with low L 1 norms in several settings. In large part of the recent literature, the degree of a polynomial which represents a Boolean function in some way was chosen to be the measure of the complexity of the Boolean function (see, e. have high degree, but small L 1 norms. So, in conjunction with communication complexity, instead of the degree, the L 1 norm can be an important measure of hardness. We conjecture that the randomized communication complexity of any Boolean function is bounded by the polylogarithm of its L 1 norm. We can prove only a weaker statement: we present a two-party, randomized, common-coin communication protocol for computing functions with O(L 2 1) bits of communication, with error-probability of exp(?cc), (even with large degree or exponential number of terms). Then we present several applications of this theorem for circuit lower bounds (both for bounded-and unbounded depth), and a decision-tree lower bound.
منابع مشابه
A Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates
The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...
متن کاملEvolutionary QCA Fault-Tolerant Reversible Full Adder
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
متن کاملLow Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure
Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...
متن کاملA New Circuit Scheme for Wide Dynamic Circuits
In this paper, a new circuit scheme is proposed to reduce the power consumption of dynamic circuits. In the proposed circuit, an NMOS keeper transistor is used to maintain the voltage level in the output node against charge sharing, leakage current and noise sources. Using the proposed keeper scheme, the voltage swing on the dynamic node is lowered to reduce the power consumption of wide fan-in...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 188 شماره
صفحات -
تاریخ انتشار 1995